Gradient-based habitat affinities predict species vulnerability to drought.

نویسندگان

  • Diane M Debinski
  • Jennet C Caruthers
  • Dianne Cook
  • Jason Crowley
  • Hadley Wickham
چکیده

Ecological fingerprints of climate change are becoming increasingly evident at broad geographical scales as measured by species range shifts and changes in phenology. However, finer-scale species-level responses to environmental fluctuations may also provide an important bellwether of impending future community responses. Here we examined changes in abundance of butterfly species along a hydrological gradient of six montane meadow habitat types in response to drought. Our data collection began prior to the drought, and we were able to track changes for 11 years, of which eight were considered mild to extreme drought conditions. We separated the species into those that had an affinity for hydric vs. xeric habitats. We suspected that drought would favor species with xeric habitat affinities, but that there could be variations in species-level responses along the hydrological gradient. We also suspected that mesic meadows would be most sensitive to drought conditions. Temporal trajectories were modeled for both species groups (hydric vs. xeric affinity) and individual species. Abundances of species with affinity for xeric habitats increased in virtually all meadow types. Conversely, abundances of species with affinity for hydric habitats decreased, particularly in mesic and xeric meadows. Mesic meadows showed the most striking temporal abundance trajectory: Increasing abundances of species with xeric habitat affinity were offset by decreasing or stable abundances of species with hydric habitat affinity. The one counterintuitive finding was that, in some hydric meadows, species with affinity for hydric habitats increased. In these cases, we suspect that decreasing moisture conditions in hydric meadows actually increased habitat suitability because sites near the limit of moisture extremes for some species became more acceptable. Thus, species responses were relatively predictable based upon habitat affinity and habitat location along the hydrological gradient, and mesic meadows showed the highest potential for changes in community composition. The implications of these results are that longer-term changes due to drought could simplify community composition, resulting in prevalence of species tolerant to drying conditions and a loss of species associated with wetter conditions. We contend that this application of gradient analysis could be valuable in assessing species vulnerability of other taxa and ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots

BACKGROUND AND AIMS Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' ...

متن کامل

Contrasting drought survival strategies of sympatric willows (genus: Salix): consequences for coexistence and habitat specialization.

Many willow species (genus: Salix) co-occur within habitats (α-diversity) and across the landscape (β-diversity) throughout North America. This high diversity is challenging to explain because closely related species often share similar functional traits and thus experience heightened competition and shared pest and pathogen susceptibility. To investigate whether traits related to drought survi...

متن کامل

Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress

AlthoughmanyMediterranean and xeric plant species enhance their xanthophyll-mediated thermal dissipation under drought conditions, there has been limited research on photoprotective mechanism in droughted plants from other habitats. To investigate whether wetland plants utilise this mechanism under drought conditions, and whether species differ in their responses depending on their habitat affi...

متن کامل

Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species

doi: 10.1111/j.1399-3054.2006.00644.x Previous studies indicate that conifers are vulnerable to cavitation induced by drought but in many cases, not by freezing. Rarely have vulnerability to drought and freezing stress been studied together, even though both influence plant physiology and the abundance and distribution of plants in many regions of the world. We studied vulnerability to droughta...

متن کامل

Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island.

Increases in drought-induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P50 ) of 13 woody species endemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 94 5  شماره 

صفحات  -

تاریخ انتشار 2013